p53 mutation status is a primary determinant of placenta-specific protein 1 expression in serous ovarian cancers

نویسندگان

  • Eric J. Devor
  • Jesus Gonzalez-Bosquet
  • Akshaya Warrier
  • Henry D. Reyes
  • Nonye V. Ibik
  • Brandon M. Schickling
  • Andreea Newtson
  • Michael J. Goodheart
  • Kimberly K. Leslie
چکیده

Placenta-specific protein 1 (PLAC1) expression is co-opted in numerous human cancers. As a consequence of PLAC1 expression, tumor cells exhibit enhanced proliferation and invasiveness. This characteristic is associated with increased aggressiveness and worse patient outcomes. Recently, the presence of the tumor suppressor p53 was shown in vitro to inhibit PLAC1 transcription by compromising the P1, or distal/cancer, promoter. We sought to determine if this phenomenon occurs in primary patient tumors as well. Furthermore, we wanted to know if p53 mutation influenced PLAC1 expression as compared with wild-type. We chose to study serous ovarian tumors as they are well known to have a high rate of p53 mutation. We report herein that the phenomenon of PLAC1 transcription repression does occur in serous ovarian carcinomas but only when TP53 is wild-type. We find that mutant or absent p53 protein de-represses PLAC1 transcription. We further propose that the inability of mutant p53 to repress PLAC1 transcription is due to the fact that the altered TP53 protein is unable to occupy a putative p53 binding site in the PLAC1 P1 promoter thus allowing transcription to occur. Finally, we show that PLAC1 transcript number is significantly negatively correlated with patient survival in our samples. Thus, we suggest that characterizing tumors for TP53 mutation status, p53 protein status and PLAC1 transcription could be used to predict likely prognosis and inform treatment options in patients diagnosed with serous ovarian cancer.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

طبقه‌بندی مجدد کارسینوماهای سروز تخمدان با روش جدید تقسیم‌بندی دو‌گانه (two-tier) و بررسی بروز ژن P53 با رنگ‌آمیزی ایمونوهیستوشیمی

Background: Recently the use of “two tier" grading system in which ovarian serous carcinoma was classified as low-grade or high-grade in comparing to preceding system has improved authority in prognosis and survival. This approach is simplistic, reproducible, and based on biologic evidence. In this study, we reclassified ovarian serous carcinoma by a new two-tier system for grading and then eva...

متن کامل

Study of pH influence on the stability of 175th codon of P53 genes by computational and modeling methods

P53 tumor suppressor gene, also known as “genome guardian” is mutated in more than half of allkind of cancers. In this study we have investigated the controls of environmental pH for P53 genemutation in point of specific sequence which is prone to mutagenesis. The most probable cancerousmutations occur as point mutations in exons 5-8 of P53 gene. The 175th codon of P53 is the thirdmost mutated ...

متن کامل

FBXW7 is involved in the acquisition of the malignant phenotype in epithelial ovarian tumors

FBXW7 is a ubiquitin ligase that mediates ubiquitylation of oncoproteins, such as c-Myc, cyclin E, Notch and c-Jun. FBXW7 is a known tumor-suppressor gene, and mutations in FBXW7 have been reported in various human malignancies. In this study, we examined the sequences of the FBXW7 and p53 genes in 57 ovarian cancer clinical samples. Interestingly, we found no FBXW7 mutations associated with am...

متن کامل

p53 Protein Expression and Its Relation to the Apoptotic Index in Prostate Adenocarcinoma

Background: Prostate cancer is one of the most commonly diagnosed cancers in males. Tumor suppressor gene p53 plays an important role in causing cell cycle arrest and allowing apoptosis to proceed. Objective: To investigate the expression of p53 protein and its relation to apoptosis and prostate cancer traditional prognostic indicators. Methods: In this study expression of p53 was examined in p...

متن کامل

Comparative Investigation of R213G Mutation in DNA-Binding Domain of P53 Protein via Molecular Dynamics Simulation

Introduction: P53 is a tumor suppressor protein with numerous missense mutations identified in its gene. These mutations are observed in a vast number of cancers. R213G is one of them which has a role in metastatic lung cancers. In this research, R213G was studied in comparison with the wild type via molecular dynamics simulation. Method: For the three-dimensional structure of the wild-type P53...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 50  شماره 

صفحات  -

تاریخ انتشار 2017